++ Currently, the examples are being reworked after the latest update because GBIF behaves differently now. Find out more. ++
This workflow is a contribution to the NFDI4Earth conference.
This workflow is a contribution to the NFDI4Earth conference. This workflow therefore uses the frequency of Arnica montana occurrences from GBIF as a target variable together with weather data from CHELSA, land use classification from the Ökosystematlas and topographic information as predictor variables to create a species distribution model for Arnica montana across Germany.
#Import Packages import geoengine as ge from datetime import datetime from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import xarray as xr import numpy as np import asyncio import nest_asyncio
#Initialize Geo Engine in VAT ge.initialize("https://vat.gfbio.org/api")
#Get the GBIF DataProvider id (useful for translating the DataProvider name to its id) root_collection = ge.layer_collection() gbif_prov_id = '' for elem in root_collection.items: if elem.name == 'GBIF': gbif_prov_id = str(elem.provider_id) gbif_prov_id
'1c01dbb9-e3ab-f9a2-06f5-228ba4b6bf7a'
This chapter shows how to register the workflow for generating training data and how to manipulate this data to generate training data.
#Tuning parameters start_time = datetime.strptime('2001-01-01T12:00:00.000Z', "%Y-%m-%dT%H:%M:%S.%f%z") end_time = datetime.strptime('2011-01-01T12:00:00.000Z', "%Y-%m-%dT%H:%M:%S.%f%z") resolution = ge.SpatialResolution(0.01, 0.01) extent = ge.BoundingBox2D(5.852490, 47.271121, 15.022059, 55.065334) #Species selection species = "species/Arnica montana" #Arnica
#Create a workflow to retrieve Arnica montana occurrences filtered by the German border and linked to weather, land use and topographic data. workflow = ge.register_workflow({ "type": "Vector", "operator": { "type": "RasterVectorJoin", "params": { "names": { "type": "names", "values": ["Ökosystematlas", "SRTM", "Mean Air Temperature", "Mean Climate Moisture Index", "Precipitation"] }, "temporalAggregation": "none", "featureAggregation": "first", }, "sources": { "vector": { #Arnica montana ######################################### "type": "PointInPolygonFilter", "params": {}, "sources": { "points": { "type": "OgrSource", "params": { "data": f"_:{gbif_prov_id}:`{species}`", "attributeProjection": [] } }, "polygons": { "type": "OgrSource", "params": { "data": "germany" } } } }, "rasters": [{ #Ökosystematlas ######################################## "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "oekosystematlas" }, } } }, { #SRTM ######################################################### "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "srtm" }, } } }, { #Mean Annual Air Temperature ################################## "type": "TemporalRasterAggregation", "params": { "aggregation": { "type": "mean", "ignoreNoData": False }, "window": { "granularity": "years", "step": 1 }, "windowReference": None, "outputType": None, }, "sources": { "raster": { "type": "RasterScaling", "params": { "slope": { "type": "constant", "value": 0.1 }, "offset": { "type": "constant", "value": -273.15 }, "outputMeasurement": { "type": "continuous", "measurement": "temperature", "unit": "K/10" }, "scalingMode": "mulSlopeAddOffset" }, "sources": { "raster": { "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "mean_daily_air_temperature" } } } } } } } }, { #Mean Annual Climate moisture indices ######################### "type": "TemporalRasterAggregation", "params": { "aggregation": { "type": "mean", "ignoreNoData": False }, "window": { "granularity": "years", "step": 1 }, "windowReference": None, "outputType": None, }, "sources": { "raster": { "type": "RasterScaling", "params": { "slope": { "type": "constant", "value": 0.1 }, "offset": { "type": "constant", "value": 0 }, "outputMeasurement": { "type": "continuous", "measurement": "climate moisture", "unit": "kg m^-2 month^-1" }, "scalingMode": "mulSlopeAddOffset" }, "sources": { "raster": { "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "monthly_climate_moisture_indicies" } } } } } } } }, { #Sum Annual Precipitation #################################### "type": "TemporalRasterAggregation", "params": { "aggregation": { "type": "sum", "ignoreNoData": False }, "window": { "granularity": "years", "step": 1 }, "windowReference": None, "outputType": None, }, "sources": { "raster": { "type": "RasterScaling", "params": { "slope": { "type": "constant", "value": 0.1 }, "offset": { "type": "constant", "value": 0 }, "outputMeasurement": { "type": "continuous", "measurement": "precipitation", "unit": "kg m-2 month^-1" }, "scalingMode": "mulSlopeAddOffset" }, "sources": { "raster": { "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "monthly_precipitation_amount" } } } } } } } }] }, } }) workflow
7582cfcb-3d36-5b86-bb72-e81cef584fae
#Request the data from Geo Engine into a geopandas dataframe data = workflow.get_dataframe( ge.QueryRectangle( extent, ge.TimeInterval(start_time, end_time), resolution=resolution, srs="EPSG:4326" ) ) #Plot the data data.plot()
<Axes: >
data
1556 rows × 11 columns
#Rounding and grouping of occurrences to create frequency along with predictor variable combination training_data = data.round(3) training_data = training_data.groupby(['Mean Air Temperature', 'Mean Climate Moisture Index', 'Precipitation', 'SRTM', 'Ökosystematlas']).size().reset_index(name='counts') training_data
352 rows × 6 columns
training_data.sort_values('counts', ascending=False)
This chapter shows how to register the workflow to create prediction data.
#Create a workflow to request weather, land use and topographic data as a raster stack. prediction_workflow = ge.register_workflow({ "type": "Raster", "operator": { "type": "RasterStacker", "params": { "renameBands": { "type": "rename", "values": ["Ökosystematlas", "SRTM", "Mean Air Temperature", "Mean Climate Moisture Index", "Precipitation"] } }, "sources": { "rasters": [{ #Ökosystematlas ######################################## "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "oekosystematlas" }, } } }, { #SRTM ######################################################### "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "srtm" }, } } }, { #Mean Annual Air Temperature ################################## "type": "TemporalRasterAggregation", "params": { "aggregation": { "type": "mean", "ignoreNoData": False }, "window": { "granularity": "years", "step": 1 }, "windowReference": None, "outputType": None, }, "sources": { "raster": { "type": "RasterScaling", "params": { "slope": { "type": "constant", "value": 0.1 }, "offset": { "type": "constant", "value": -273.15 }, "outputMeasurement": { "type": "continuous", "measurement": "temperature", "unit": "K/10" }, "scalingMode": "mulSlopeAddOffset" }, "sources": { "raster": { "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "mean_daily_air_temperature" } } } } } } } }, { #Mean Annual Climate moisture indices ######################### "type": "TemporalRasterAggregation", "params": { "aggregation": { "type": "mean", "ignoreNoData": False }, "window": { "granularity": "years", "step": 1 }, "windowReference": None, "outputType": None, }, "sources": { "raster": { "type": "RasterScaling", "params": { "slope": { "type": "constant", "value": 0.1 }, "offset": { "type": "constant", "value": 0 }, "outputMeasurement": { "type": "continuous", "measurement": "climate moisture", "unit": "kg m^-2 month^-1" }, "scalingMode": "mulSlopeAddOffset" }, "sources": { "raster": { "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "monthly_climate_moisture_indicies" } } } } } } } }, { #Sum Annual Precipitation #################################### "type": "TemporalRasterAggregation", "params": { "aggregation": { "type": "sum", "ignoreNoData": False }, "window": { "granularity": "years", "step": 1 }, "windowReference": None, "outputType": None, }, "sources": { "raster": { "type": "RasterScaling", "params": { "slope": { "type": "constant", "value": 0.1 }, "offset": { "type": "constant", "value": 0 }, "outputMeasurement": { "type": "continuous", "measurement": "precipitation", "unit": "kg m-2 month^-1" }, "scalingMode": "mulSlopeAddOffset" }, "sources": { "raster": { "type": "RasterTypeConversion", "params": { "outputDataType": "F32" }, "sources": { "raster": { "type": "GdalSource", "params": { "data": "monthly_precipitation_amount" } } } } } } } }] } } }) prediction_workflow
370296a3-db66-599b-8e55-2a4bf362a09a
#Preparing of the boundaries for the workflow raster stream bbox = ge.QueryRectangle( extent, ge.TimeInterval(start_time, start_time), resolution=resolution, srs="EPSG:4326" )
nest_asyncio.apply() async def get_prediction_data(workflow, bbox, bands=[0,1,2,3,4], clip=True): data = await workflow.raster_stream_into_xarray(bbox, bands=bands, clip_to_query_rectangle=clip) data.to_dataset(name="prediction") return data async def main(extent, time, resolution, workflow): bbox = ge.QueryRectangle(extent, ge.TimeInterval(time, time), resolution=resolution, srs="EPSG:4326") return await get_prediction_data(workflow, bbox) try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) prediction_data = loop.run_until_complete(main(extent, start_time, resolution, prediction_workflow)) prediction_data.to_dataset(name="prediction")
/home/duempelmann/geoengine_env/lib/python3.10/site-packages/rasterio/windows.py:314: RasterioDeprecationWarning: The height, width, and precision parameters are unused, deprecated, and will be removed in 2.0.0. warnings.warn(
<xarray.Dataset> Size: 14MB Dimensions: (x: 918, y: 780, time: 1, band: 5) Coordinates:
x (x) float64 7kB 5.855 5.865 5.875 5.885 ... 15.0 15.01 15.02
y (y) float64 6kB 55.07 55.06 55.05 55.04 ... 47.3 47.29 47.28
time (time) datetime64[ns] 8B 2001-01-01
band (band) int64 40B 0 1 2 3 4 spatial_ref int64 8B 0 Data variables: prediction (time, band, y, x) float32 14MB 21.0 21.0 ... 1.082e+03
array([ 5.855, 5.865, 5.875, ..., 15.005, 15.015, 15.025])
array([55.065, 55.055, 55.045, ..., 47.295, 47.285, 47.275])
array(['2001-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
array([0, 1, 2, 3, 4])
array(0)
array([[[[ 21. , 21. , 21. , ..., 255. , 255. , 255. ], [ 21. , 21. , 21. , ..., 255. , 255. , 255. ], [ 21. , 21. , 21. , ..., 255. , 255. , 255. ], ..., [ 255. , 255. , 255. , ..., 255. , 255. , 255. ], [ 255. , 255. , 255. , ..., 255. , 255. , 255. ], [ 255. , 255. , 255. , ..., 255. , 255. , 255. ]], [[ nan, nan, nan, ..., 75. , 73. , 65. ], [ nan, nan, nan, ..., 43. , 43. , 43. ], [ nan, nan, nan, ..., 37. , 36. , 40. ], ... [ 15.433333 , 16.1 , 14.066668 , ..., 16.175 , 17.408333 , 18.425001 ], [ 10.825001 , 14.850001 , 14.416667 , ..., 37.775 , 33.941666 , 29.716667 ], [ 11.216667 , 10.241667 , 13.741668 , ..., 43.55 , 42.108334 , 37.875 ]], [[ 834.4 , 834.89996 , 835.2999 , ..., 682.3 , 685.1 , 687.1 ], [ 834.5 , 835.1 , 835.5 , ..., 673.5 , 676.4 , 678.3 ], [ 834.7 , 835.2 , 835.7 , ..., 656.30005 , 659.19995 , 661.2 ], ..., [1098.7999 , 1097.2001 , 1097.5 , ..., 924.60004 , 936.5 , 943.3001 ], [1088.6001 , 1094.4 , 1098.6 , ..., 1041.5001 , 1045.1001 , 1018.89996 ], [1094. , 1102.1 , 1108.2999 , ..., 1123.7001 , 1130.8999 , 1081.5 ]]]], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-f21fb5ff-9d23-4a16-9aa9-510e0e81ee92' class='xr-section-summary-in' type='checkbox' ><label for='section-f21fb5ff-9d23-4a16-9aa9-510e0e81ee92' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>x</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-46fd53bf-7d8e-436b-a4f8-f8f06bdd2069' class='xr-index-data-in' type='checkbox'/><label for='index-46fd53bf-7d8e-436b-a4f8-f8f06bdd2069' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([ 5.854999999999984, 5.864999999999984, 5.874999999999984, 5.884999999999984, 5.894999999999984, 5.904999999999983, 5.914999999999983, 5.924999999999983, 5.934999999999983, 5.9449999999999825, ... 14.934999999999901, 14.9449999999999, 14.9549999999999, 14.9649999999999, 14.9749999999999, 14.9849999999999, 14.9949999999999, 15.0049999999999, 15.0149999999999, 15.024999999999899], dtype='float64', name='x', length=918))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>y</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8054ce07-50ea-4595-8c4a-6e16bb4c7500' class='xr-index-data-in' type='checkbox'/><label for='index-8054ce07-50ea-4595-8c4a-6e16bb4c7500' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([55.065000000000246, 55.05500000000025, 55.04500000000025, 55.03500000000025, 55.025000000000254, 55.015000000000256, 55.00500000000026, 54.99500000000026, 54.98500000000026, 54.975000000000264, ... 47.36500000000076, 47.355000000000764, 47.345000000000766, 47.33500000000077, 47.32500000000077, 47.31500000000077, 47.305000000000774, 47.295000000000776, 47.28500000000078, 47.27500000000078], dtype='float64', name='y', length=780))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-282dd89b-3f25-43ac-bbfe-030b158d7433' class='xr-index-data-in' type='checkbox'/><label for='index-282dd89b-3f25-43ac-bbfe-030b158d7433' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex(['2001-01-01'], dtype='datetime64[ns]', name='time', freq=None))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>band</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-734beb7b-b166-4bc2-bee9-4115008dce2b' class='xr-index-data-in' type='checkbox'/><label for='index-734beb7b-b166-4bc2-bee9-4115008dce2b' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Int64Index([0, 1, 2, 3, 4], dtype='int64', name='band'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-902453eb-39c5-441f-a011-16fdf12cf690' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-902453eb-39c5-441f-a011-16fdf12cf690' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div> #Plotting the Layers of the returned xarray dataarray fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(16, 8)) axes[0, 0].set_ylim(-0.01, 1.01) axes[0, 1].set_ylim(-0.01, 1.01) axes[0, 2].set_ylim(-0.01, 1.01) axes[1, 0].set_ylim(-0.01, 1.01) axes[1, 1].set_ylim(-0.01, 1.01) # Add your plot data and other customizations to each subplot prediction_data.isel(band=0).plot(ax=axes[0, 0], vmin=0, vmax=74) prediction_data.isel(band=1).plot(ax=axes[0, 1], vmin=0, vmax=3000) prediction_data.isel(band=2).plot(ax=axes[0, 2]) prediction_data.isel(band=3).plot(ax=axes[1, 0], vmin=-100, vmax=300) prediction_data.isel(band=4).plot(ax=axes[1, 1]) axes[0, 0].set_title("Ökosystematlas") axes[0, 1].set_title("SRTM") axes[0, 2].set_title("Mean Annual Air Temperature") axes[1, 0].set_title("Mean Annual Climate moisture indices") axes[1, 1].set_title("Sum Annual Precipitation") plt.subplots_adjust(wspace=0.2, hspace=0.4) plt.show() Machine Learning In this chapter, the training data is used to create a simple RandomForestRegressor model, which is hyperparameterised using a GridSearchCV and the best model is selected for prediction later. #Create training and test data X = training_data[['Mean Air Temperature', 'Mean Climate Moisture Index', 'Precipitation', 'SRTM', 'Ökosystematlas']] y = training_data['counts'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) #Define the hyperparameter grid param_grid = { 'n_estimators': [200, 400, 600, 800, 1000], 'max_depth': [5, 10, 15, 20], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } #Create the random forest regressor model rf = RandomForestRegressor() #Perform grid search cross-validation grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error', n_jobs=4, verbose=2) grid_search.fit(X_train, y_train) #Get the best hyperparameters and model best_params = grid_search.best_params_ best_model = grid_search.best_estimator_ Fitting 5 folds for each of 180 candidates, totalling 900 fits [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s best_params {'max_depth': 5, 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 200} #Simple prediction on the training data y_pred = best_model.predict(X_test) #Model performance using r2 r2 = r2_score(y_test, y_pred) print(f"R2 score: {r2:.2f}") R2 score: 0.06 Prediction In this chapter the best model is chosen and used to predict on the prediction data, for the whole of Germany. # Flatten the xarray dataset to a 2D array prediction_df = prediction_data.to_dataset(dim="band").to_dataframe().reset_index() X_pred = prediction_df.loc[:, [0, 1, 2, 3, 4]] X_pred.columns = ["Ökosystematlas", "SRTM", "Mean Air Temperature", "Mean Climate Moisture Index", "Precipitation"] X_pred = X_pred[['Mean Air Temperature', 'Mean Climate Moisture Index', 'Precipitation', 'SRTM', 'Ökosystematlas']] # Use the trained model to make predictions y_pred = best_model.predict(X_pred) y_pred_log = np.log(y_pred) y_pred array([9.35699139, 9.35699139, 9.35699139, ..., 6.37438362, 6.25392884, 6.70247926]) #Extract coordinates for spatial alignment prediction_ds = prediction_data.to_dataset(name='prediction_data') x_coords = prediction_ds.coords['x'].values y_coords = prediction_ds.coords['y'].values #Reshape the model prediction for plotting y_pred_reshaped = y_pred.reshape(prediction_data.time.size, 1, prediction_data.y.size, prediction_data.x.size) da = xr.DataArray(y_pred_reshaped, dims=['time', 'band', 'y', 'x']) da = da.assign_coords(x=x_coords, y=y_coords) da.rio.write_crs('EPSG:4326', inplace=True) #Reshape the model prediction for plotting y_pred_reshaped_log = y_pred_log.reshape(prediction_data.time.size, 1, prediction_data.y.size, prediction_data.x.size) da_log = xr.DataArray(y_pred_reshaped_log, dims=['time', 'band', 'y', 'x']) da_log = da_log.assign_coords(x=x_coords, y=y_coords) da_log.rio.write_crs('EPSG:4326', inplace=True) <xarray.DataArray (time: 1, band: 1, y: 780, x: 918)> Size: 6MB array([[[[2.23612381, 2.23612381, 2.23612381, ..., 0.80446736, 0.80446736, 0.80446736], [2.23612381, 2.23612381, 2.23612381, ..., 0.80937892, 0.80937892, 0.80937892], [2.23612381, 2.23612381, 2.23612381, ..., 0.81060927, 0.81060927, 0.81060927], ..., [0.75689373, 0.75689373, 0.75689373, ..., 1.5268051 , 1.40980293, 1.51508751], [0.75689373, 0.75689373, 0.75689373, ..., 1.68137312, 1.86942503, 1.63518892], [0.75689373, 0.75583891, 0.75511056, ..., 1.8522874 , 1.83320988, 1.9024775 ]]]]) Coordinates: x (x) float64 7kB 5.855 5.865 5.875 5.885 ... 15.0 15.01 15.02 y (y) float64 6kB 55.07 55.06 55.05 55.04 ... 47.3 47.29 47.28 spatial_ref int64 8B 0 Dimensions without coordinates: time, bandxarray.DataArraytime: 1band: 1y: 780x: 9182.236 2.236 2.236 2.236 2.236 2.236 ... 1.915 1.902 1.852 1.833 1.902array([[[[2.23612381, 2.23612381, 2.23612381, ..., 0.80446736, 0.80446736, 0.80446736], [2.23612381, 2.23612381, 2.23612381, ..., 0.80937892, 0.80937892, 0.80937892], [2.23612381, 2.23612381, 2.23612381, ..., 0.81060927, 0.81060927, 0.81060927], ..., [0.75689373, 0.75689373, 0.75689373, ..., 1.5268051 , 1.40980293, 1.51508751], [0.75689373, 0.75689373, 0.75689373, ..., 1.68137312, 1.86942503, 1.63518892], [0.75689373, 0.75583891, 0.75511056, ..., 1.8522874 , 1.83320988, 1.9024775 ]]]])Coordinates: (3)x(x)float645.855 5.865 5.875 ... 15.01 15.02array([ 5.855, 5.865, 5.875, ..., 15.005, 15.015, 15.025])y(y)float6455.07 55.06 55.05 ... 47.29 47.28array([55.065, 55.055, 55.045, ..., 47.295, 47.285, 47.275])spatial_ref()int640crs_wkt :GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]semi_major_axis :6378137.0semi_minor_axis :6356752.314245179inverse_flattening :298.257223563reference_ellipsoid_name :WGS 84longitude_of_prime_meridian :0.0prime_meridian_name :Greenwichgeographic_crs_name :WGS 84horizontal_datum_name :World Geodetic System 1984grid_mapping_name :latitude_longitudespatial_ref :GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]array(0)Indexes: (2)xPandasIndexPandasIndex(Float64Index([ 5.854999999999984, 5.864999999999984, 5.874999999999984, 5.884999999999984, 5.894999999999984, 5.904999999999983, 5.914999999999983, 5.924999999999983, 5.934999999999983, 5.9449999999999825, ... 14.934999999999901, 14.9449999999999, 14.9549999999999, 14.9649999999999, 14.9749999999999, 14.9849999999999, 14.9949999999999, 15.0049999999999, 15.0149999999999, 15.024999999999899], dtype='float64', name='x', length=918))yPandasIndexPandasIndex(Float64Index([55.065000000000246, 55.05500000000025, 55.04500000000025, 55.03500000000025, 55.025000000000254, 55.015000000000256, 55.00500000000026, 54.99500000000026, 54.98500000000026, 54.975000000000264, ... 47.36500000000076, 47.355000000000764, 47.345000000000766, 47.33500000000077, 47.32500000000077, 47.31500000000077, 47.305000000000774, 47.295000000000776, 47.28500000000078, 47.27500000000078], dtype='float64', name='y', length=780))Attributes: (0) workflow_germany = ge.register_workflow({ "type": "Vector", "operator": { "type": "OgrSource", "params": { "data": "germany", } } }) workflow_germany 2429a993-385f-546f-b4f7-97b3ba4a5adb #Request the data from Geo Engine into a geopandas dataframe germany = workflow_germany.get_dataframe( ge.QueryRectangle( extent, ge.TimeInterval(start_time, start_time), resolution=resolution, srs="EPSG:4326" ) ) fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(24, 8)) da.plot(ax=axes[0], cmap='viridis') germany.boundary.plot(ax=axes[0], color='orange', linewidth=1) axes[0].set_title("Prediction") axes[0].set_xlabel('') axes[0].set_ylabel('') da_log.plot(ax=axes[1], cmap='viridis') germany.boundary.plot(ax=axes[1], color='orange', linewidth=1) axes[1].set_title("Prediction (log)") axes[1].set_xlabel('') axes[1].set_ylabel('') # Vector plot data.plot(ax=axes[2], markersize=10, color='teal') germany.boundary.plot(ax=axes[2], color='orange', linewidth=1) axes[2].set_title("GBIF") axes[2].set_xlabel('') axes[2].set_ylabel('') plt.show()
[[ nan, nan, nan, ..., 75. , 73. , 65. ], [ nan, nan, nan, ..., 43. , 43. , 43. ], [ nan, nan, nan, ..., 37. , 36. , 40. ],
... [ 15.433333 , 16.1 , 14.066668 , ..., 16.175 , 17.408333 , 18.425001 ], [ 10.825001 , 14.850001 , 14.416667 , ..., 37.775 , 33.941666 , 29.716667 ], [ 11.216667 , 10.241667 , 13.741668 , ..., 43.55 , 42.108334 , 37.875 ]],
[[ 834.4 , 834.89996 , 835.2999 , ..., 682.3 , 685.1 , 687.1 ], [ 834.5 , 835.1 , 835.5 , ..., 673.5 , 676.4 , 678.3 ], [ 834.7 , 835.2 , 835.7 , ..., 656.30005 , 659.19995 , 661.2 ], ..., [1098.7999 , 1097.2001 , 1097.5 , ..., 924.60004 , 936.5 , 943.3001 ], [1088.6001 , 1094.4 , 1098.6 , ..., 1041.5001 , 1045.1001 , 1018.89996 ], [1094. , 1102.1 , 1108.2999 , ..., 1123.7001 , 1130.8999 , 1081.5 ]]]], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-f21fb5ff-9d23-4a16-9aa9-510e0e81ee92' class='xr-section-summary-in' type='checkbox' ><label for='section-f21fb5ff-9d23-4a16-9aa9-510e0e81ee92' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>x</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-46fd53bf-7d8e-436b-a4f8-f8f06bdd2069' class='xr-index-data-in' type='checkbox'/><label for='index-46fd53bf-7d8e-436b-a4f8-f8f06bdd2069' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([ 5.854999999999984, 5.864999999999984, 5.874999999999984, 5.884999999999984, 5.894999999999984, 5.904999999999983, 5.914999999999983, 5.924999999999983, 5.934999999999983, 5.9449999999999825, ... 14.934999999999901, 14.9449999999999, 14.9549999999999, 14.9649999999999, 14.9749999999999, 14.9849999999999, 14.9949999999999, 15.0049999999999, 15.0149999999999, 15.024999999999899], dtype='float64', name='x', length=918))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>y</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8054ce07-50ea-4595-8c4a-6e16bb4c7500' class='xr-index-data-in' type='checkbox'/><label for='index-8054ce07-50ea-4595-8c4a-6e16bb4c7500' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Float64Index([55.065000000000246, 55.05500000000025, 55.04500000000025, 55.03500000000025, 55.025000000000254, 55.015000000000256, 55.00500000000026, 54.99500000000026, 54.98500000000026, 54.975000000000264, ... 47.36500000000076, 47.355000000000764, 47.345000000000766, 47.33500000000077, 47.32500000000077, 47.31500000000077, 47.305000000000774, 47.295000000000776, 47.28500000000078, 47.27500000000078], dtype='float64', name='y', length=780))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-282dd89b-3f25-43ac-bbfe-030b158d7433' class='xr-index-data-in' type='checkbox'/><label for='index-282dd89b-3f25-43ac-bbfe-030b158d7433' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex(['2001-01-01'], dtype='datetime64[ns]', name='time', freq=None))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>band</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-734beb7b-b166-4bc2-bee9-4115008dce2b' class='xr-index-data-in' type='checkbox'/><label for='index-734beb7b-b166-4bc2-bee9-4115008dce2b' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Int64Index([0, 1, 2, 3, 4], dtype='int64', name='band'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-902453eb-39c5-441f-a011-16fdf12cf690' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-902453eb-39c5-441f-a011-16fdf12cf690' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>
#Plotting the Layers of the returned xarray dataarray fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(16, 8)) axes[0, 0].set_ylim(-0.01, 1.01) axes[0, 1].set_ylim(-0.01, 1.01) axes[0, 2].set_ylim(-0.01, 1.01) axes[1, 0].set_ylim(-0.01, 1.01) axes[1, 1].set_ylim(-0.01, 1.01) # Add your plot data and other customizations to each subplot prediction_data.isel(band=0).plot(ax=axes[0, 0], vmin=0, vmax=74) prediction_data.isel(band=1).plot(ax=axes[0, 1], vmin=0, vmax=3000) prediction_data.isel(band=2).plot(ax=axes[0, 2]) prediction_data.isel(band=3).plot(ax=axes[1, 0], vmin=-100, vmax=300) prediction_data.isel(band=4).plot(ax=axes[1, 1]) axes[0, 0].set_title("Ökosystematlas") axes[0, 1].set_title("SRTM") axes[0, 2].set_title("Mean Annual Air Temperature") axes[1, 0].set_title("Mean Annual Climate moisture indices") axes[1, 1].set_title("Sum Annual Precipitation") plt.subplots_adjust(wspace=0.2, hspace=0.4) plt.show()
In this chapter, the training data is used to create a simple RandomForestRegressor model, which is hyperparameterised using a GridSearchCV and the best model is selected for prediction later.
#Create training and test data X = training_data[['Mean Air Temperature', 'Mean Climate Moisture Index', 'Precipitation', 'SRTM', 'Ökosystematlas']] y = training_data['counts'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#Define the hyperparameter grid param_grid = { 'n_estimators': [200, 400, 600, 800, 1000], 'max_depth': [5, 10, 15, 20], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } #Create the random forest regressor model rf = RandomForestRegressor() #Perform grid search cross-validation grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error', n_jobs=4, verbose=2) grid_search.fit(X_train, y_train) #Get the best hyperparameters and model best_params = grid_search.best_params_ best_model = grid_search.best_estimator_
Fitting 5 folds for each of 180 candidates, totalling 900 fits [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.5s [CV] END max_depth=5, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=200; total time= 0.1s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=600; total time= 0.4s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=10, min_samples_leaf=4, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=800; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=1, min_samples_split=10, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=200; total time= 0.2s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=2, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=5, n_estimators=1000; total time= 0.8s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=600; total time= 0.5s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=2, min_samples_split=10, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time= 0.1s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=2, n_estimators=1000; total time= 0.7s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=400; total time= 0.3s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=600; total time= 0.4s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=800; total time= 0.6s [CV] END max_depth=15, min_samples_leaf=4, min_samples_split=5, n_estimators=1000; total time= 0.7s
best_params
{'max_depth': 5, 'min_samples_leaf': 4, 'min_samples_split': 10, 'n_estimators': 200}
#Simple prediction on the training data y_pred = best_model.predict(X_test) #Model performance using r2 r2 = r2_score(y_test, y_pred) print(f"R2 score: {r2:.2f}")
R2 score: 0.06
In this chapter the best model is chosen and used to predict on the prediction data, for the whole of Germany.
# Flatten the xarray dataset to a 2D array prediction_df = prediction_data.to_dataset(dim="band").to_dataframe().reset_index() X_pred = prediction_df.loc[:, [0, 1, 2, 3, 4]] X_pred.columns = ["Ökosystematlas", "SRTM", "Mean Air Temperature", "Mean Climate Moisture Index", "Precipitation"] X_pred = X_pred[['Mean Air Temperature', 'Mean Climate Moisture Index', 'Precipitation', 'SRTM', 'Ökosystematlas']] # Use the trained model to make predictions y_pred = best_model.predict(X_pred) y_pred_log = np.log(y_pred) y_pred
array([9.35699139, 9.35699139, 9.35699139, ..., 6.37438362, 6.25392884, 6.70247926])
#Extract coordinates for spatial alignment prediction_ds = prediction_data.to_dataset(name='prediction_data') x_coords = prediction_ds.coords['x'].values y_coords = prediction_ds.coords['y'].values
#Reshape the model prediction for plotting y_pred_reshaped = y_pred.reshape(prediction_data.time.size, 1, prediction_data.y.size, prediction_data.x.size) da = xr.DataArray(y_pred_reshaped, dims=['time', 'band', 'y', 'x']) da = da.assign_coords(x=x_coords, y=y_coords) da.rio.write_crs('EPSG:4326', inplace=True) #Reshape the model prediction for plotting y_pred_reshaped_log = y_pred_log.reshape(prediction_data.time.size, 1, prediction_data.y.size, prediction_data.x.size) da_log = xr.DataArray(y_pred_reshaped_log, dims=['time', 'band', 'y', 'x']) da_log = da_log.assign_coords(x=x_coords, y=y_coords) da_log.rio.write_crs('EPSG:4326', inplace=True)
<xarray.DataArray (time: 1, band: 1, y: 780, x: 918)> Size: 6MB array([[[[2.23612381, 2.23612381, 2.23612381, ..., 0.80446736, 0.80446736, 0.80446736], [2.23612381, 2.23612381, 2.23612381, ..., 0.80937892, 0.80937892, 0.80937892], [2.23612381, 2.23612381, 2.23612381, ..., 0.81060927, 0.81060927, 0.81060927], ..., [0.75689373, 0.75689373, 0.75689373, ..., 1.5268051 , 1.40980293, 1.51508751], [0.75689373, 0.75689373, 0.75689373, ..., 1.68137312, 1.86942503, 1.63518892], [0.75689373, 0.75583891, 0.75511056, ..., 1.8522874 , 1.83320988, 1.9024775 ]]]]) Coordinates:
array([[[[2.23612381, 2.23612381, 2.23612381, ..., 0.80446736, 0.80446736, 0.80446736], [2.23612381, 2.23612381, 2.23612381, ..., 0.80937892, 0.80937892, 0.80937892], [2.23612381, 2.23612381, 2.23612381, ..., 0.81060927, 0.81060927, 0.81060927], ..., [0.75689373, 0.75689373, 0.75689373, ..., 1.5268051 , 1.40980293, 1.51508751], [0.75689373, 0.75689373, 0.75689373, ..., 1.68137312, 1.86942503, 1.63518892], [0.75689373, 0.75583891, 0.75511056, ..., 1.8522874 , 1.83320988, 1.9024775 ]]]])
PandasIndex(Float64Index([ 5.854999999999984, 5.864999999999984, 5.874999999999984, 5.884999999999984, 5.894999999999984, 5.904999999999983, 5.914999999999983, 5.924999999999983, 5.934999999999983, 5.9449999999999825, ... 14.934999999999901, 14.9449999999999, 14.9549999999999, 14.9649999999999, 14.9749999999999, 14.9849999999999, 14.9949999999999, 15.0049999999999, 15.0149999999999, 15.024999999999899], dtype='float64', name='x', length=918))
PandasIndex(Float64Index([55.065000000000246, 55.05500000000025, 55.04500000000025, 55.03500000000025, 55.025000000000254, 55.015000000000256, 55.00500000000026, 54.99500000000026, 54.98500000000026, 54.975000000000264, ... 47.36500000000076, 47.355000000000764, 47.345000000000766, 47.33500000000077, 47.32500000000077, 47.31500000000077, 47.305000000000774, 47.295000000000776, 47.28500000000078, 47.27500000000078], dtype='float64', name='y', length=780))
workflow_germany = ge.register_workflow({ "type": "Vector", "operator": { "type": "OgrSource", "params": { "data": "germany", } } }) workflow_germany
2429a993-385f-546f-b4f7-97b3ba4a5adb
#Request the data from Geo Engine into a geopandas dataframe germany = workflow_germany.get_dataframe( ge.QueryRectangle( extent, ge.TimeInterval(start_time, start_time), resolution=resolution, srs="EPSG:4326" ) )
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(24, 8)) da.plot(ax=axes[0], cmap='viridis') germany.boundary.plot(ax=axes[0], color='orange', linewidth=1) axes[0].set_title("Prediction") axes[0].set_xlabel('') axes[0].set_ylabel('') da_log.plot(ax=axes[1], cmap='viridis') germany.boundary.plot(ax=axes[1], color='orange', linewidth=1) axes[1].set_title("Prediction (log)") axes[1].set_xlabel('') axes[1].set_ylabel('') # Vector plot data.plot(ax=axes[2], markersize=10, color='teal') germany.boundary.plot(ax=axes[2], color='orange', linewidth=1) axes[2].set_title("GBIF") axes[2].set_xlabel('') axes[2].set_ylabel('') plt.show()